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Introduction
The fundamental problem of using metaheuristics
and almost all other approximation methods for
difficult discrete optimization problems is the lack
of knowledge regarding the quality of the
obtained solution. We propose a methodology for
efficiently estimating the quality of such
approaches by rapidly generating good lower
bounds on the optimal value of the objective
function using a quantum machine.
Currently, the two leading types of quantum
machines are quantum gate-based computers,
developed mainly by IBM and Google, and
adiabatic quantum computing (AQC), developed
by D-Wave and NEC.
In AQC, in particular quantum annealing, a
starting state of the system modeled in hardware
on multiple qubits is prepared as the ground state
of the Hamiltonian encoding the solution to the
desired optimization problem, to which adiabatic
evolution is then applied, aiming at the
minimal-energy state of the whole system.
The model for AQC must be finally written as
QUBO – Quadratic Unconstrained Binary
Optimization.

Fig. 1. D-Wave Advantage quantum annealer

Formulation of the problem

In the NP-hard single-machine Total Weighted
Tardiness Problem (TWTP, 1||

∑
wiTi) there is

given a set of tasks J = {1,2, ...,n}, which must
without interruption be executed on a single
machine. The following are associated with each
task i ∈ J : execution time pi, critical line di, and
weight of penalty function wi.
Let Si be the starting moment and Ci = Si + pi the
ending moment of the execution of task i ∈ J .
Then, tardiness

Ti = max {0,Ci − di}.
The TWTP problem consists in determining the
execution schedule of the machine described by

Si, Ci, i ∈ J with a minimal total cost
n∑

i=1
wiTi.

The task execution schedule described by the
sequences Si, Ci, i ∈ J is feasible if the following
constraints are met:

Si + pi ≤ Sj ∨ Sj + pj ≤ Si, i ̸= j , i , j = 1,2, . . . ,n,

Si ≥ 0, Ci = Si + pi, i = 1,2, . . . ,n.

Lagrange relaxation of the goal function
The Lagrange function with multipliers uij, vij,
i , j = 1,2, . . . ,n takes for the vector S = (S1,S2, . . . ,
Sn) and the matrix y = [yij]n×n the form:

L(S, y ,u, v) =
n∑

i=1

wiTi +
n∑

i=1

n∑
j=i+1

uij(Si + pi − Sj−

K (1 − yij)) +
n∑

i=1

n∑
j=i+1

vij(Sj + pj − Si − Kyij).

Transforming this expression we obtain

L(S, y ,u, v) =
n∑

i=1

Li(Si,u, v)+

K
n∑

i=1

n∑
j=i+1

Qij(yij,u, v) + V (u, v),where

Li(Si,u, v) = wiTi + αiSi, αi =
n∑

j=i+1

(uij − vij) +
i−1∑
j=1

(vji − uji),

Qij(yij,u, v) = (uij − vij)yij,

V (u, v) =
n∑

i=1

pi

 i−1∑
j=1

vji +
n∑

j=i+1

uij

 .

Therefore, when looking for a good lower bound, one
should compute

LB = max
u,v

min
S,y

L(S, y ,u, v) =

max
u,v

(
n∑

i=1

min
0≤Si≤T−pi

Li(Si,u, v)+

+K
n∑

i=1

n∑
j=i+1

min
y

Qij(yij,u, v) + V (u, v)


whereby the maximization with respect to u and v can be
approximate, while that with respect to S and y is exact.

Determination of LB on a D-Wave quantum annealer
Let us note that LB can be written as a minimization of the
opposite (minus) value, with constraints: LB =

− min
u,v ,S,y

−
 n∑

i=1

Li(Si ,u, v) + K
n∑

i=1

n∑
j=i+1

Qij(yij ,u, v) + V (u, v)


s.t.

Li(Si,u, v) ≤ Li(0,u, v), i = 1,2, . . . ,n,
Li(Si,u, v) ≤ Li(1,u, v), i = 1,2, . . . ,n,

...
Li(Si,u, v) ≤ Li(T − pi,u, v), i = 1,2, . . . ,n,

and
Qij(yij,u, v) ≤ Qij(0,u, v), i , j = 1,2, . . . ,n,
Qij(yij,u, v) ≤ Qij(1,u, v), i , j = 1,2, . . . ,n.

Experimental research

To verify the effectiveness of the proposed method of
determining the lower bound, computational
experiments were carried out on the quantum
algorithm implemented on the D-WAVE quantum
annealer and the algorithm determining the lower
bound on a classical silicon computer with an
i7-12700H 2.30 GHz processor.

Analyzing the results, we can conclude that in a
significant number of instances, the LBQ determined
by the quantum annealer is significantly greater than
the LBCPU determined on a classical computer.

Comparing the calculation time of a quantum exponent
and a classical computer, we can conclude that the
time of quantum calculations is from 6 to nearly 140
times shorter than the time of calculations on a
classical computer.

Experimental research

Table: The results of experiments.

example LBQ TimeQ LBCPU TIMECPU Speedup
wt5 40 423 15 0 183 12.20
wt5 41 2153 15 456 140 9.33
wt5 42 1657 15 300 103 6.87
wt5 43 1001 15 10 148 9.87
wt5 44 1588 15 116 115 7.67
wt5 45 2099 15 0 187 12.47
wt5 46 1791 15 604 116 7.73
wt5 47 2443 15 783 147 9.80
wt5 48 3353 15 1138 123 8.20
wt5 49 1578 15 358 100 6.67
wt6 70 469 15 0 202 13.47
wt6 71 3328 15 385 241 16.07
wt6 72 3563 15 290 359 23.93
wt6 73 2630 15 421 178 11.87
wt6 74 3216 15 612 312 20.80
wt6 75 1280 15 0 324 21.60
wt6 76 0 15 0 261 17.40
wt6 77 8 15 0 242 16.13
wt6 78 0 15 0 299 19.93
wt6 79 16 15 0 186 12.40

Experimental research

Table: The results of experiments.

example LBQ TimeQ LBCPU TIMECPU Speedup
wt7 70 3049 15 15 450 30.00
wt7 71 3635 15 317 582 38.80
wt7 72 1395 15 0 282 18.80
wt7 73 3806 15 62 451 30.07
wt7 74 3117 15 0 420 28.00
wt7 75 2840 15 0 238 15.87
wt7 76 0 15 0 605 40.33
wt7 77 64 15 0 436 29.07
wt7 78 0 15 0 302 20.13
wt7 79 12 15 0 381 25.40
wt8 80 100 15 0 1407 93.80
wt8 81 1271 15 0 1278 85.20
wt8 82 992 15 0 1249 83.27
wt8 83 662 15 0 1576 105.07
wt8 84 292 15 0 945 63.00
wt8 85 481 15 0 1682 112.13
wt8 86 3522 15 0 2053 136.87
wt8 87 1961 15 0 1127 75.13
wt8 88 5529 15 0 1774 118.27
wt8 89 2333 15 0 1512 100.80

Summary

We propose an algorithm for determining the
lower bound on the value of the objective function
for the TWTP problem implemented on a D-Wave
quantum computer.
The presented approach can be adapted to
estimate the value of the optimal solution of other
NP-hard discrete optimization problems, such as
Traveling Salesman Problem or multi-machine
problems (e.g., flow shop, job shop).
A natural direction for further research will be to
apply the proposed method for determining lower
bounds on a quantum machine, together with the
(natural) determination of upper bounds by simply
solving the problem formulated as QUBO, also on
a QPU, to the construction of an exact algorithm
based on the Branch and Bound method.
This will allow – against the intuition associated
with the probabilistic nature of computation on
QPUs – the generation of truly optimal solutions.
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